
graphene-django-cud
Release 0.11.0

Jul 11, 2023

User Guide

1 Installation 3

2 Basic usage 5

3 Mutations 7
3.1 DjangoCreateMutation . 7
3.2 DjangoUpdateMutation . 7
3.3 DjangoPatchMutation . 8
3.4 DjangoDeleteMutation . 8
3.5 DjangoBatchCreateMutation . 9
3.6 DjangoBatchUpdateMutation . 9
3.7 DjangoBatchPatchMutation . 10
3.8 DjangoFilterUpdateMutation . 10
3.9 DjangoFilterDeleteMutation . 11
3.10 DjangoBatchDeleteMutation . 12

4 Included and excluded fields 13
4.1 Excluded fields . 13
4.2 Only fields . 13

5 Optional and required fields 15
5.1 General rules . 15
5.2 Explicitly overriding . 15

6 Permissions and authentication 17
6.1 Main attributes . 17
6.2 The get_permissions method . 17
6.3 Overriding the permissions pipeline . 18
6.4 Wrapping the mutate method . 18

7 Field validation 21
7.1 Individual fields . 21
7.2 Overriding the validation pipeline . 21
7.3 Known limitations . 22

8 Nested fields 23
8.1 Foreign key extras . 23

i

8.2 Many to one extras . 24
8.3 Many to many extras . 25
8.4 One to one extras . 27
8.5 Other aliases . 27
8.6 Excluding fields . 28
8.7 Deep nested arguments . 29

9 Custom field value handling 31
9.1 Handlers . 31
9.2 Known limitations . 32

10 Auto context fields 33

11 Other hooks 35
11.1 before_mutate . 35
11.2 before_save . 35
11.3 after_mutate . 36

12 Field, argument and type naming 37

13 Overriding field types 39

14 Custom fields 41

15 Reusing types 43

16 Known limitations and quirks 45

17 Lifecycle of a mutation 47

18 Models documentation 49
18.1 DjangoCreateMutation . 49
18.2 DjangoUpdateMutation . 49
18.3 DjangoPatchMutation . 51
18.4 DjangoDeleteMutation . 52
18.5 DjangoBatchCreateMutation . 52
18.6 DjangoBatchUpdateMutation . 53
18.7 DjangoBatchPatchMutation . 54
18.8 DjangoBatchDeleteMutation . 56
18.9 DjangoFilterDeleteMutation . 56
18.10 DjangoFilterUpdateMutation . 57

19 Conversion utilities 59

20 Custom types 61

ii

graphene-django-cud, Release 0.11.0

Graphene-django-cud is an extension of graphene-django, supplying a number of helper classes designed to fast-track
creation of create, update and delete mutations.

User Guide 1

graphene-django-cud, Release 0.11.0

2 User Guide

CHAPTER 1

Installation

Installation is done with pip (or via wrappers such as pipenv or poetry):

pip install graphene_django_cud

3

graphene-django-cud, Release 0.11.0

4 Chapter 1. Installation

CHAPTER 2

Basic usage

To use, here illustrated by DjangoCreateMutation, simply create a new inherting class. Suppose we have the
following model and Node.

class User(models.Model):
name = models.CharField(max_length=255)
address = models.TextField()

class UserNode(DjangoObjectType):
class Meta:

model = User
interfaces = (Node,)

Then we can create a create mutation with the following schema

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User

class Mutation(graphene.ObjectType):
create_user = CreateUserMutation.Field()

class Query(graphene.ObjectType):
user = graphene.Field(UserNode, id=graphene.String())

def resolve_user(self, info, id):
return User.objects.get(pk=id)

schema = Schema(query=Query, mutation=Mutation)

Note that the UserNode has to be registered as a field before the mutation is instantiated. This will be configurable
in the future.

The input to the mutation is a single variable input which is automatically created with the models fields. An
example mutation would then be

5

graphene-django-cud, Release 0.11.0

mutation {
createUser(input: {name: "John Doe", address: "Downing Street 10"}){

user{
id
name
address

}
}

}

6 Chapter 2. Basic usage

CHAPTER 3

Mutations

3.1 DjangoCreateMutation

Mutation class for creating a new instance of the supplied model.

The mutation accepts one argument named input. The mutation returns a single field for resolving, which is the
camel-case version of the model name.

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User

mutation {
createUser(input: {name: "John Doe", address: "161 Lexington Avenue"}){

user{
id
name
address

}
}

}

3.2 DjangoUpdateMutation

Mutation class for updating an existing instance of the supplied model.

The mutation accepts two arguments named id, and input. The mutation returns a single field for resolving, which is
the camel-case version of the model name.

The type of the id argument is ID. However, both regular primary keys and relay global id’s are accepted and handled
properly.

By default, all included fields of the model are marked as required in the input.

7

graphene-django-cud, Release 0.11.0

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User

mutation {
updateUser(id: "VXNlck5vZGU6MQ==", input: {name: "John Doe", address: "161

→˓Lexington Avenue"}){
user{

id
name
address

}
}

}

3.3 DjangoPatchMutation

Mutation class for updating an existing instance of the supplied model.

The mutation accepts two arguments named id, and input. The mutation returns a single field for resolving, which is
the camel-case version of the model name.

The type of the id argument is ID. However, both regular primary keys and relay global id’s are accepted and handled
properly.

All fields of the model are marked as not required.

class PatchUserMutation(DjangoPatchMutation):
class Meta:

model = User

mutation {
patchUser(id: "VXNlck5vZGU6MQ==", input: {name: "John Doe"}){

user{
id
name
address

}
}

}

3.4 DjangoDeleteMutation

Mutation class for deleting a single instance of the supplied model.

The mutation accepts one argument named id. The type of the id argument is ID. However, both regular primary keys
and relay global id’s are accepted and handled properly.

The mutation returns two fields for resolving:

• found: True if the instance was found and deleted.

• deletedId: The id (primary key) of the deleted instance.

8 Chapter 3. Mutations

graphene-django-cud, Release 0.11.0

class DeleteUserMutation(DjangoDeleteMutation):
class Meta:

model = User

mutation {
deleteUser(id: "VXNlck5vZGU6MTMzNw=="){

found
deletedId

}
}

3.5 DjangoBatchCreateMutation

Mutation class for creating multiple new instances of the supplied model.

The mutation accepts one argument named input, which is an array-version of the typical create-input. The mutation
returns a single field for resolving, which is the camel-case version of the model name.

class BatchCreateUserMutation(DjangoBatchCreateMutation):
class Meta:

model = User

mutation {
batchCreateUser(input: {name: "John Doe", address: "161 Lexington Avenue"}){

user{
id
name
address

}
}

}

3.6 DjangoBatchUpdateMutation

Mutation class for update multiple instances of the supplied model.

The mutation accepts one argument named input, which is an array-version of the typical update-input, with the
addition that all object IDs are inside the objects. The mutation returns a single field for resolving, which is the
camel-case version of the model name.

class BatchUpdateUserMutation(DjangoBatchUpdateMutation):
class Meta:

model = User

mutation {
batchUpdateUser(input: [{

id: "VXNlck5vZGU6MTMzNw==",
name: "John Doe",
address: "161 Lexington Avenue"

}]){
user{

(continues on next page)

3.5. DjangoBatchCreateMutation 9

graphene-django-cud, Release 0.11.0

(continued from previous page)

id
name
address

}
}

}

3.7 DjangoBatchPatchMutation

Mutation class for patching multiple instances of the supplied model.

The mutation accepts one argument named input, which is an array-version of the typical update-input, with the
addition that all object IDs are inside the objects. The mutation returns a single field for resolving, which is the
camel-case version of the model name.

class BatchPatchUserMutation(DjangoBatchPatchMutation):
class Meta:

model = User

mutation {
batchPatchUser(input: [{

id: "VXNlck5vZGU6MTMzNw==",
address: "161 Lexington Avenue"

}]){
user{

id
name
address

}
}

}

3.8 DjangoFilterUpdateMutation

Mutation class for updating multiple instances of the supplied model. The filtering used to decide which instances to
update, is defined in the meta-attribute filter_fields.

The mutation accepts two arguments named filter and data. The shape of filter is based on the contents of filter_fields.
The fields, and their input, is passed directly to an Model.objects.filter-call.

The shape of data is similar to a DjangoUpdateMutation input field, although all fields are optional by default.

The mutation returns two fields for resolving:

• updatedCount: The number of updated objects.

• updatedObjects: The updated objects.

class FilterUpdateUserMutation(DjangoFilterUpdateMutation):
class Meta:

model = User
filter_fields = (

"name",

(continues on next page)

10 Chapter 3. Mutations

graphene-django-cud, Release 0.11.0

(continued from previous page)

"house__address",
"house__owner__name__in"

)

mutation {
filterUpdateUsers(

filter: {
"name": "John Doe",
"house_Owner_Name_In": ["Michael Bloomberg", "Steve Jobs"]

},
data: {

"name": "New name"
}

){
updatedObjects{

id
name

}
}

}

3.9 DjangoFilterDeleteMutation

Mutation class for deleting multiple instances of the supplied model. The filtering used to decide which instances to
delete, is defined in the meta-attribute filter_fields.

The mutation accepts one argument named input. The shape of input is based on the contents of filter_fields. The
fields, and their input, is passed directly to an Model.objects.filter-call.

The mutation returns two fields for resolving:

• deletionCount: True if the instance was found and deleted.

• deletedIds: The id (primary key) of the deleted instance.

class BatchDeleteUserMutation(DjangoBatchDeleteMutation):
class Meta:

model = User
filter_fields = (

"name",
"house__address",
"house__owner__name__in"

)

mutation {
batchDeleteUser(input: {"name": "John Doe", "house_Owner_Name_In": ["Michael

→˓Bloomberg", "Steve Jobs"]}){
user{

id
name
address

}
}

}

3.9. DjangoFilterDeleteMutation 11

graphene-django-cud, Release 0.11.0

3.10 DjangoBatchDeleteMutation

Mutation class for deleting multiple instances of the supplied model.

The mutation accepts one argument named ids, which is an array of object IDs.

The mutation returns two fields for resolving:

• deletionCount: The number of deleted instances.

• deletedIds: The id (primary key) of the deleted instance.

• missedIds: The id (primary key) of the instances not found.

class BatchDeleteUserMutation(DjangoBatchDeleteMutation):
class Meta:

model = User

mutation {
batchDeleteUser(ids: [

"VXNlck5vZGU6MTMzNw=="
]){

user{
id
name
address

}
}

}

12 Chapter 3. Mutations

CHAPTER 4

Included and excluded fields

This section is primarily relevant for create, update and patch mutations.

4.1 Excluded fields

When the mutation input types are created, all model fields are iterated over, and added to the input object with the
corresponding type. Some fields, such as the password field of the standard User model, should in most scenarios
be excluded. This can be achieved with the exclude_fields attribute:

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
exclude_fields = ("password",)

4.2 Only fields

In some scenarios, if we have a lot of fields excluded, we might want to supply a list of fields that should be included,
and let all others be excluded. This can be achieved with the only_fields attribute:

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
only_fields = ("first_name","last_name","address",)

If both only_fields and exclude_fields are supplied, first the fields matching only_fields are extracted,
and then the fields matching exclude_fields are removed from this list.

13

graphene-django-cud, Release 0.11.0

14 Chapter 4. Included and excluded fields

CHAPTER 5

Optional and required fields

This section is primarily relevant for create, update and patch mutations.

5.1 General rules

There are certain rules which decide whether or not a field is marked as required. For patch mutations, all fields are
always marked as optional. For update and create mutations, however, the following rules apply:

1. If the field has an explicit override, this is used.

2. If the field has a default-value, it is marked as optional.

3. If the field is a many-to-many field and has blank=True, it is marked as optional.

4. If the field is nullable, it is marked as optional.

5. In all other scenarios, the field is marked as required.

5.2 Explicitly overriding

A field can explicitly be marked as optional or required with the meta-attributes optional_fields and
required_fields:

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
required_fields = ("first_name",)
optional_fields = ("last_name",)

15

graphene-django-cud, Release 0.11.0

16 Chapter 5. Optional and required fields

CHAPTER 6

Permissions and authentication

6.1 Main attributes

By default, a mutation is accessible by anything and everyone. To add access-control to a mutation, the meta-attributes
permissions and login_required is used.

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
login_required = True
permissions = ("users.add_user",)

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User
permissions = ("users.change_user", "users.some_custom_perm")

Note that having a permissions typically (but not necessarily) implies that the user is authenticated. Hence in many
cases, simply setting the permissions-array to something is sufficient to guarantee that the user is authenticated.

6.2 The get_permissions method

In some scenarios, we might want to grant permission to a mutation conditionally. For this, we can override the
get_permissions classmethod, which by default simply returns the permissions-iterable.

Say for example, we want to grant access to update a user-object if the calling user is the same as the updated user, or
if the calling user has the users.change_user-permission:

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User

(continues on next page)

17

graphene-django-cud, Release 0.11.0

(continued from previous page)

login_required = True
permissions = ("users.change_user",)

@classmethod
def get_permissions(cls, root, info, input, id) -> Iterable[str]:

Use the disambiguate_id utility from graphene_django_cud to parse the id
if int(disambiguate_id(id)) == info.context.user.id:

Returning an empty array is essentially the same as granting access
→˓here.

return []
return cls._meta.permissions

The get_permissions method takes slightly different arguments depending on what mutation is being used. For
patch and update mutations, the method is given (root, info, input, id). For create mutations, the method
is given (root, info, input).

6.3 Overriding the permissions pipeline

Internally, all mutations call a method called check_permissions when checking permissions. The default im-
plementation of this method simply calls the get_permissions-method, and checks these permissions against the
calling user.

check_permissions will by default raise an exception if the calling user does not have the required permissions.

If some other pipeline is desired for checking permissions, you can override the check_permissions-method.
For instance, we could implement the permissions-checking above in the following manner:

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User
login_required = True

@classmethod
def check_permissions(cls, root, info, input, id):

if int(disambiguate_id(id)) == info.context.user.id \
or info.context.user.has_perm("users.change_user"):
Not raising an Exception means the calling user has permission to

→˓access the mutation
return

raise GraphQLError("You do not have permission to access this mutation.")

You can also wrap check_permissions in decorators, if you so desire.

The check_permissions method takes slightly different arguments depending on what mutation is being used.
For patch and update mutations, the method is given (root, info, input, id). For create mutations, the
method is given (root, info, input).

6.4 Wrapping the mutate method

If none of the above is sufficient, the final frontier is overriding the mutate-method of each mutation class. Note that
that check_permissions takes essentially the same arguments as mutate. Hence overriding mutate should
only be required in very fringe scenarios.

18 Chapter 6. Permissions and authentication

graphene-django-cud, Release 0.11.0

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User
login_required = True

@classmethod
def mutate(cls, root, info, input, id):

if int(disambiguate_id(id)) != info.context.user.id \
and not info.context.user.has_perm("users.change_user"):
raise GraphQLError("You do not have permission to access this mutation.")

return super().mutate(root, info, input, id)

6.4. Wrapping the mutate method 19

graphene-django-cud, Release 0.11.0

20 Chapter 6. Permissions and authentication

CHAPTER 7

Field validation

7.1 Individual fields

Before the mutation is executed, the value of each field is validated. By default, each field passes this validation
process. Custom validation can be added per field by adding a validate_<fieldname>-method to the mutation
class.

nordic_names = ["Odin", "Tor", "Balder"]

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User

def validate_first_name(root, info, value, input, **kwargs):
if not value in nordic_names:

raise ValueError("First name must be nordic")

Raise an error if a field does not pass validation.

A field validation function always receives the arguments (root, info, value, input). For some mutations,
extra keyword arguments are also supplied:

• DjangoUpdateMutation and DjangoPatchMutation: obj, the retrieved model instance, and id the input id.

• DjangoBatchCreateMutation: full_input, the full input object (i.e. containing all objects to be created).

7.2 Overriding the validation pipeline

Internally, each mutation calls a method named validate, which in turn finds the individual field validation methods on
the class, and calls these.

You can, however, override this validate function, if you need a more complex validation pipeline.

21

graphene-django-cud, Release 0.11.0

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User

@classmethod
def validate_first_name(cls, root, info, value, input, **kwargs):

if not value in nordic_names:
raise ValueError("First name must be nordic")

@classmethod
def validate(cls, root, info, input, obj=None, id=None):

Check that the user being updated is active
if obj and obj.is_active == False:

raise ValueError("Inactive users cannot be updated")

super().validate(root, info, input, obj=obj, id=id)

The validate method takes the same arguments as the individual validate_field methods, minus the value field.

7.3 Known limitations

There is currently no way to explicitly validate nested fields, beyond validating the entire field substructure. I.e. for
a deeply nested field named enemies, the only way to validate this field and its “sub”-fields, is by having a method
validate_enemies.

22 Chapter 7. Field validation

CHAPTER 8

Nested fields

There are four meta fields which allow us to extend the handling of both sides of a foreign key relationship (foreign
key extras, many to one extras and one to one extras), as well as many to many relationships.

8.1 Foreign key extras

The foreign_key_extras field is a dictionary containing information regarding how to handle a model’s foreign
keys. Here is an example:

class Cat(models.Model):
owner = models.ForeignKey(User, on_delete=models.CASCADE, related_name="cats")
name = models.TextField()

class CreateCatMutation(DjangoCreateMutation):
class Meta:

model = Cat
foreign_key_extras = {"owner": {"type": "CreateUserInput"}}

By default, the owner field is of type ID!, i.e. you have to supply the ID of an owner when creating a cat. But
suppose you instead for every cat want to create a new user as well. Well that’s exactly what this mutation allows for
(demands).

Here, the owner field will now be of type CreateUserInput!, which has to have been created before, typically
via a CreateUserMutation, which by default will result in the type name CreateUserInput. An example
call to the mutation is:

mutation {
createCat(input: {owner: {name: "John Doe"}, name: "Kitty"}){

cat{
name
owner {

id
name

(continues on next page)

23

graphene-django-cud, Release 0.11.0

(continued from previous page)

}
}

}
}

If you don’t have an existing type for creating a user, e.g. the “CreateUserInput” we used above, you can set the type
to “auto”, which will create a new type.

8.2 Many to one extras

The many_to_one_extras field is a dictionary containing information regarding how to handle many to one
relations, i.e. the “other” side of a foreign key. Suppose we have the Cat model as above. Looking from the User-
side, we could add nested creations of Cat’s, by the following mutation

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
many_to_one_extras = {

"cats": {
"add": {"type": "auto"}

}
}

This will add an input argument catsAdd, which accepts an array of Cat objects. Note that the type value
auto means that a new type to accept the cat object will be created. This is usually necessary, as the regular
CreateCatInput requires an owner id, which we do not want to give here, as it is inferred.

Now we could create a user with multiple cats in one go as follows:

mutation {
createUser(input: {

name: "User",
catsAdd: [

{name: "First Kitty"},
{name: "Second kitty"}

]
}){

user{
id
name
cats{

edges{
node{

id
}

}
}

}
}

}

Note that the default many to one relation argument cats still accepts a list of inputs. You might want to keep it this
way. However, you can override the default by adding an entry with the key “exact”:

24 Chapter 8. Nested fields

graphene-django-cud, Release 0.11.0

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
many_to_one_extras = {

"cats": {
"exact": {"type": "auto"}

}
}

Note that we can add a new key with the type “ID”, to still allow for Cat objects to be added by id.

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
many_to_one_extras = {

"cats": {
"exact": {"type": "auto"},
"by_id": {"type": "ID"}

}
}

mutation {
createUser(input: {

name: "User",
cats: [

{name: "First Kitty"},
{name: "Second kitty"}

],
catsById: ["Q2F0Tm9kZTox"]

}){
user{

...UserInfo
}

}
}

8.3 Many to many extras

The many_to_many_extras field is a dictionary containing information regarding how to handle many to many
relations. Suppose we have the Cat model as above, and a Dog model like:

class Dog(models.Model):
owner = models.ForeignKey(User, null=True, on_delete=models.SET_NULL)
name = models.TextField()

enemies = models.ManyToManyField(Cat, blank=True, related_name='enemies')

def is_stray():
return self.owner is None

class DogNode(DjangoObjectType):
class Meta:

model = Dog

8.3. Many to many extras 25

graphene-django-cud, Release 0.11.0

We now have a many to many relationship, which by default will be modelled by default using an [ID] argument.
However, this can be customized fairly similar to many to one extras:

class CreateDogMutation(DjangoCreateMutation):
class Meta:

model = Dog
many_to_many_extras = {

'enemies': {
'add': {"type": "CreateCatInput"}

}
}

This will, similar to before, add an enemiesAdd argument:

mutation {
createDog(input: {

name: "Buster",
enemies: ["Q2F0Tm9kZTox"],
enemiesAdd: [{owner: "VXNlck5vZGU6MQ==", name: "John's cat"]

}}){
dog{

...DogInfo
}

}
}

This will create a dog with two enemies, one that already exists, and a new one, which has the owner
VXNlck5vZGU6MQ== (some existing user). Note that if CreateCatInput expects us to create a new user, we
would have to do that here.

We can also add an extra field here for removing entities from a many to many relationship:

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"add": {"type": "CreateCatInput"},
"remove": {"type": "ID"},
A similar form would be "remove": true

}
}

Note that this has to have the type “ID”. Also note that this has no effect on DjangoCreateMutation mutations.
We could then perform

mutation {
updateDog(id: "RG9nTm9kZTox", input: {

name: "Buster 2",
enemiesRemove: ["Q2F0Tm9kZTox"],
enemiesAdd: [{owner: "VXNlck5vZGU6MQ==", name: "John's cat"]

}}){
dog{

...DogInfo
}

}
}

This would remove “Q2F0Tm9kZTox” as an enemy, in addition to creating a new one as before.

26 Chapter 8. Nested fields

graphene-django-cud, Release 0.11.0

We can alter the behaviour of the default argument (e.g. enemies), by adding the “exact”:

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"exact": {"type": "CreateCatInput"},
"remove": {"type": "ID"},
A similar form would be "remove": true

}
}

mutation {
updateDog(id: "RG9nTm9kZTox", input: {

name: "Buster 2",
enemies: [{owner: "VXNlck5vZGU6MQ==", name: "John's cat"]

}}){
dog{

...DogInfo
}

}
}

This will have the rather odd behavior that all enemies are reset, and only the new ones created will be added
to the relationship. In other words it exists as a sort of purge and create functionality. When used in a
DjangoCreateMutation it will simply function as an initial populator of the relationship.

If you don’t have an existing type for creating a user, e.g. the “CreateCatInput” we used above, you can set the type to
“auto”, which will create a new type.

8.4 One to one extras

The one_to_one_extras field is a dictionary containing information regarding how to handle a model’s One-
ToOne fields. Here is an example:

class CreateDogMutation(DjangoCreateMutation):
class Meta:

model = Dog
one_to_one_extras = {"registration": {"type": "auto"}}

By default, the registration field is a type ID!, but using auto, this will make a new type to accept create a
registration object, called CreateDogCreateRegistrationInput.

8.5 Other aliases

In both the many to many and many to one extras cases, the naming of the extra fields are not arbitrary. However, they
can be customized. Suppose you want your field to be named enemiesKill, which should remove from a many to
many relationship. Then initially, we might write:

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog

(continues on next page)

8.4. One to one extras 27

graphene-django-cud, Release 0.11.0

(continued from previous page)

many_to_many_extras = {
"enemies": {

"exact": {"type": "CreateCatInput"},
"kill": {"type": "ID"},

}
}

Unfortunately, this will not work, as graphene-django-cud does not know what operation kill translates to. Should
we add or remove (or set) the entities? Fortunately, we can explicitly tell which operation to use, by supplying the
“operation” key:

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"exact": {"type": "CreateCatInput"},
"kill": {"type": "ID", "operation": "remove"},

}
}

Legal values are “add”, “remove”, and “update” (and some aliases of these).

The argument names can also be customized:

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"exact": {"type": "CreateCatInput"},
"kill": {"type": "ID", "operation": "remove", "name": "kill_enemies"},

}
}

The name of the argument will be killEnemies instead of the default enemiesKill. The name will be translated
from snake_case to camelCase as per usual.

8.6 Excluding fields

By default, all fields are included in the input type. However, you can exclude fields by using the exclude_fields
attribute:

class CreateDogMutation(DjangoCreateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"exact": {

"type": "CreateCatInput",
"exclude_fields": ("name",),

},
}

}

28 Chapter 8. Nested fields

graphene-django-cud, Release 0.11.0

This will exclude the name field from the input type.

8.7 Deep nested arguments

Note that deeply nested arguments are added by default when using existing types. Hence, for the mutation

class CreateDogMutation(DjangoCreateMutation):
class Meta:

model = Dog
many_to_many_extras = {

"enemies": {
"exact": {"type": "CreateCatInput"},

}
}

Where CreateCatInput is the type generated for

class CreateCatMutation(DjangoCreateMutation):
class Meta:

model = Cat
many_to_many_extras = {

"targets": {"exact": {"type": "CreateMouseInput"}},
}
foreign_key_extras = {"owner": {"type": "CreateUserInput"}}

Where we assume we have now also created a new model Mouse with a standard CreateMouseMutation muta-
tion. We could then execute the following mutation:

mutation {
createDog(input: {

owner: null,
name: "Spark",
enemies: [

{
name: "Kitty",
owner: {name: "John doe"},
targets: [

{name: "Mickey mouse"}
]

},
{

name: "Kitty",
owner: {name: "Ola Nordmann"}

}
]

}){
...DogInfo

}
}

This creates a new (stray) dog, two new cats with one new owner each and one new mouse. The new cats and the new
dog are automatically set as enemies, and the mouse is automatically set as a target of the first cat.

For auto fields, we can create nested behaviour explicitly:

8.7. Deep nested arguments 29

graphene-django-cud, Release 0.11.0

class CreateUserMutation(DjangoCreateMutation):
class Meta:

model = User
many_to_one_extras = {

"cats": {
"exact": {

"type": "auto",
"many_to_many_extras": {

"enemies": {
"exact": {

"type": "CreateDogInput"
}

}
}

}
}

}

There is no limit to how deep this recursion may be.

30 Chapter 8. Nested fields

CHAPTER 9

Custom field value handling

9.1 Handlers

In some scenarios, field values have to be handled or transformed in a custom manner before it is saved. For this
we can use custom field handlers. To create a custom field handler, add a method to the mutation class named
handle_<fieldname>.

Suppose we have a user object with a gpa-score field, which we don’t bother to validate, but want to clamp between
1.0 and 4.0.

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User

@classmethod
def handle_gpa(cls, value, name, info) -> int:

return max(1.0, min(4.0, value))

The returned value from a handle-method will be the one used when updating/creating an instance of the model.

Notably, this method will override a few specific internal mechanisms:

• By default, foreign keys fields will have “_id” attached as a suffix to the field name before saving the raw id.
Also global relay ids and regular ids are disambiguated.

• Many to many fields which accept IDs are disambiguated in a similar manner.

This will not happen if you add handle-functions for such fields, and hence you are expected to translate the values
into values Django understands internally.

NB: The method signature of handle-fields are due to change before version 1.0.0. The new signature will most
likely be (root, info, value, input), with obj, id and full_input as potential extra kwargs.

31

graphene-django-cud, Release 0.11.0

9.2 Known limitations

There is currently no way to separately handle nested fields, beyond handling the entire field substructure. I.e. for
a deeply nested field named enemies, the only way to handle this field and its “sub”-fields, is by having a method
handle_enemies.

Do note however, that if models have clashing field names, the handle-method will be called for both these fields.

This is something being actively worked on resolving.

32 Chapter 9. Custom field value handling

CHAPTER 10

Auto context fields

The create, update and patch mutations contains a meta-field auto_context_fields. It allows us to automatically
assign field values depending on values in the context (i.e. the current HttpRequest). Most typically, this will be
used to automatically assign the the current user to some field.

Suppose for instance you have the following model:

class ForumThread(models.Model):
created_by = models.ForeignKey(User, on_delete=models.CASCADE)

More fields

We can then automatically assign the created_by field to the calling user by creating a mutation:

class CreateForumThreadMutation(DjangoCreateMutation):
class Meta:

auto_context_fields = {
'created_by': 'user'

}

Presupposing, of course, that the user field of the info.context (HttpRequest) field is set. This works with
any context field. Also note that auto context fields are automatically set as required=False, to please Graphene.
Finally note that if we add an explicit value to the createdBy field when calling the mutation, this value will override
the auto context field.

33

graphene-django-cud, Release 0.11.0

34 Chapter 10. Auto context fields

CHAPTER 11

Other hooks

These hooks are class methods of a mutation, which can be overridden with custom behavior.

11.1 before_mutate

Mutation Arguments Note
create cls, root, info, input 1
patch/update cls, root, info, input, id 1
delete cls, root, info, id
batch_create cls, root, info, input 1
batch_patch/batch_update cls, root, info, input 1
batch_delete/filter_delete cls, root, info, input 1

1: The hook can modify and return the input object. Returning None will cause the mutation to use the original
input.

11.2 before_save

Mutation Arguments Note
create cls, root, info, input, obj 1
patch/update cls, root, info, input, id, obj 1
delete cls, root, info, id, obj 1
batch_create cls, root, info, input, created_objects 2
batch_patch/batch_update cls, root, info, input, updated_objects 2
batch_delete cls, root, info, ids, qs_to_delete 3
filter_delete cls, root, info, filter_qs 3

35

graphene-django-cud, Release 0.11.0

1: You can optionally modify and return the ORM object obj.
2: You can optionally modify and return the ORM objects in created_objects or updated_objects.
3: You can optionally modify and return the querysets.

11.3 after_mutate

Mutation Arguments Note
create cls, root, info, input, obj, return_data 1
patch/update cls, root, info, id, input, obj, return_data 1
delete cls, root, info, deleted_id, found
batch_create cls, root, info, input, created_objs, return_data 1
batch_patch/batch_update cls, root, info, input, updated_objs, return_data 1
batch_delete/filter_delete cls, root, info, input, deletion_count, ids

1: You can modify and return the return_data argument.

36 Chapter 11. Other hooks

CHAPTER 12

Field, argument and type naming

There are three different names that have to be specified for each mutation:

• The name of the mutation.

• The name of the input argument(s).

• The name of the input argument type.

• The name of the field that can be resolved.

The first one is always set by you, and the second one is always input or id (or both).

The two others can be customized by the following meta parameters:

• type_name

• return_field_name

class UpdateUserMutation(DjangoUpdateMutation):
class Meta:

model = User
type_name = "ChangeUserInput" # Default here would be UpdateUserInput
return_field_name = "updatedUser" # Default here would be user

class Mutation(graphene.ObjectType):
update_user = UpdateUserMutation.Field()

mutation UpdateUserMutation($input: ChangeUserInput){
updateUser(input: $input){

updatedUser{

}
}

}

Given the existence of GraphQL aliasing, the utility of the latter is questionable.

37

https://graphql.org/learn/queries/#aliases

graphene-django-cud, Release 0.11.0

38 Chapter 12. Field, argument and type naming

CHAPTER 13

Overriding field types

This section is primarily relevant for create, update and patch mutations.

By default, graphene-django-cud iterates through all the fields of a model, and converts each field to a corresponding
graphene type. This converted type is added to the mutation input argument.

The conversions are typically what you would expect, e.g. models.CharField is converted to graphene.
String.

It is possible to override this conversion, by explicitly providing a field_types argument. By default, the field will
be coerced when added to the Django model instance. If the desired result is either something more complex than a
simple coercion, or the overriding type cannot be coerced into the corresponding Django model field; then you must
implement a custom handler.

class Dog(models.Model):
owner = models.ForeignKey(User, on_delete=models.CASCADE, related_name='dogs')
name = models.TextField()
tag = models.CharField(max_length=16, default="Dog-1", help_text="Non-unique

→˓identifier for the dog, on the form 'Dog-%d'")

class CreateDogMutation(DjangoCreateMutation):
class Meta:

model = Dog
field_types = {

"tag": graphene.Int(required=False)
}

@classmethod
def handle_tag(cls, value, *args, **kwargs):

return "Dog-" + str(value)

39

graphene-django-cud, Release 0.11.0

40 Chapter 13. Overriding field types

CHAPTER 14

Custom fields

It is possible to add custom input fields to the following mutations:

• DjangoCreateMutation

• DjangoPatchMutation

• DjangoUpdateMutation

• DjangoBatchCreateMutation

• DjangoBatchPatchMutation

• DjangoBatchUpdateMutation

The custom fields will be added to the top-level input input data structure. While the fields will not be used directly in
any creation/updating process by the library itself, they can be accessed in all handle- and hook-methods.

class Dog(models.Model):
name = models.TextField()
bark_count = models.IntegerField(default=0)

class UpdateDogMutation(DjangoUpdateMutation):
class Meta:

model = Dog
custom_fields = {

"bark": graphene.Boolean()
}

@classmethod
def before_save(cls, root, info, input, id, obj: Dog):

if input.get("bark"):
obj.bark_count += 1

return obj

Running the below mutation will increase the bark count by one:

41

graphene-django-cud, Release 0.11.0

42 Chapter 14. Custom fields

CHAPTER 15

Reusing types

TODO

43

graphene-django-cud, Release 0.11.0

44 Chapter 15. Reusing types

CHAPTER 16

Known limitations and quirks

One could wish for an API where you could specify both IDs and objects in a single array for many to many and many
to one relations. However, due to GraphQLs strict type system, this is not currently possible — in particular due to the
fact that scalars and object types cannot simultaneously be part of a union.

Some workarounds could be implemented for this, but we deem this more dirty than useful.

45

graphene-django-cud, Release 0.11.0

46 Chapter 16. Known limitations and quirks

CHAPTER 17

Lifecycle of a mutation

47

graphene-django-cud, Release 0.11.0

48 Chapter 17. Lifecycle of a mutation

CHAPTER 18

Models documentation

Documentation for all models.

18.1 DjangoCreateMutation

Will create a new mutation which will create a new object of the supplied model.

Mutation input arguments:

Argument Type
input Object!

Meta fields:

mutation {
createUser(input: {name: "John Doe", address: "Downing Street 10"}){

user{
id
name
address

}
}

}

18.2 DjangoUpdateMutation

Will update an existing instance of a model. The UpdateMutation (in contrast to the PatchMutation) requires all fields
to be supplied by default.

Mutation input arguments:

49

graphene-django-cud, Release 0.11.0

Argument Type
id ID!
input Object!

All meta arguments:

Argument type De-
fault

Description

model Model None The model. Required.
only_fields It-

er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name
of the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

cus-
tom_fields

Tu-
ple

None A list of custom graphene fields which will be added to the model input type.

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

many_to_many_extrasDict {} A dict with extra information regarding many-to-many fields. See below.
many_to_one_extrasDict {} A dict with extra information regarding many-to-one relations. See below.
for-
eign_key_extras

Dict {} A dict with extra information regarding foreign key extras.

one_to_one_extrasDict {} A dict with extra information regarding one to one extras.
use_select_for_updateBooleanTrue If true, the queryset will be altered with select_for_update, locking the

database rows in question. Used to ensure data integrity on updates.

mutation {
updateUser(id: "VXNlck5vZGU6MQ==", input: {

name: "John Doe",
address: "Downing Street 10"

}){
user{

id
name
address

}
}

}

50 Chapter 18. Models documentation

graphene-django-cud, Release 0.11.0

18.3 DjangoPatchMutation

Will update an existing instance of a model. The PatchMutation (in contrast to the UpdateMutation) does not require
all fields to be supplied. I.e. all are fields are optional.

Mutation input arguments:

Argument Type
id ID!
input Object!

All meta arguments:

Argument type De-
fault

Description

model Model None The model. Required.
only_fields It-

er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name
of the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

cus-
tom_fields

Tu-
ple

None A list of custom graphene fields which will be added to the model input type.

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

many_to_many_extrasDict {} A dict with extra information regarding many-to-many fields. See below.
many_to_one_extrasDict {} A dict with extra information regarding many-to-one relations. See below.
for-
eign_key_extras

Dict {} A dict with extra information regarding foreign key extras.

one_to_one_extrasDict {} A dict with extra information regarding one to one extras.
use_select_for_updateBooleanTrue If true, the queryset will be altered with select_for_update, locking the

database rows in question. Used to ensure data integrity on updates.

18.3.1 Example mutation

mutation {
updateUser(id: "VXNlck5vZGU6MQ==", input: {

name: "John Doe",
}){

(continues on next page)

18.3. DjangoPatchMutation 51

graphene-django-cud, Release 0.11.0

(continued from previous page)

user{
id
name
address

}
}

}

18.4 DjangoDeleteMutation

Will delete an existing instance of a model. The returned arguments are:

• found: True if the instance was found and deleted.

• deletedId: THe id of the deleted instance.

Mutation input arguments:

Argument Type
id ID!

All meta arguments:

Argument type Default Description
model Model None The model. Required.
permissions Tuple None The permissions required to access the mutation
login_required Boolean None If true, the calling user has to be authenticated

mutation {
deleteUser(id: "VXNlck5vZGU6MQ=="){

found
deletedId

}
}

18.5 DjangoBatchCreateMutation

Will create a new mutation which will create multiple new objects of the supplied model.

Mutation input arguments:

Argument Type
input [Object]!

Meta fields:

52 Chapter 18. Models documentation

graphene-django-cud, Release 0.11.0

Field Type De-
fault

Description

model Model None The model. Required.
only_fields It-

er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name of
the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below.
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

cus-
tom_fields

Tu-
ple

None A list of custom graphene fields which will be added to the model input type.

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

use_type_nameString None If supplied, no new input type will be created, and instead the registry will be queried for
an input type with that name. Note that supplying this value will invalidate many other
arguments, as they are only relevant for creating the new input type.

many_to_many_extrasDict {} A dict with extra information regarding many-to-many fields. See below.
many_to_one_extrasDict {} A dict with extra information regarding many-to-one relations. See below.
for-
eign_key_extras

Dict {} A dict with extra information regarding foreign key extras.

one_to_one_extrasDict {} A dict with extra information regarding one to one extras.

mutation{
batchCreateUser(input: [{name: "John Doe", address: "Downing Street 10"}]){

user{
id
name
address

}
}

}

18.6 DjangoBatchUpdateMutation

Will create a new mutation which can be used to update multiple objects of the supplied model.

Mutation input arguments:

Argument Type
input [Object]!

18.6. DjangoBatchUpdateMutation 53

graphene-django-cud, Release 0.11.0

Meta fields:

Field Type De-
fault

Description

model Model None The model. Required.
only_fields It-

er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name of
the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below.
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

cus-
tom_fields

Tu-
ple

None A list of custom graphene fields which will be added to the model input type.

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

use_type_nameString None If supplied, no new input type will be created, and instead the registry will be queried for
an input type with that name. Note that supplying this value will invalidate many other
arguments, as they are only relevant for creating the new input type.

many_to_many_extrasDict {} A dict with extra information regarding many-to-many fields. See below.
many_to_one_extrasDict {} A dict with extra information regarding many-to-one relations. See below.
for-
eign_key_extras

Dict {} A dict with extra information regarding foreign key extras.

one_to_one_extrasDict {} A dict with extra information regarding one to one extras.

mutation{
batchUpdateUser(input: [{

id: "VXNlck5vZGU6MQ==",
name: "John Doe",
address: "Downing Street 10"

}]){
user{

id
name
address

}
}

}

18.7 DjangoBatchPatchMutation

Will create a new mutation which can be used to patch multiple objects of the supplied model.

54 Chapter 18. Models documentation

graphene-django-cud, Release 0.11.0

Mutation input arguments:

Argument Type
input [Object]!

Meta fields:

Field Type De-
fault

Description

model Model None The model. Required.
only_fields It-

er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name of
the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below.
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

cus-
tom_fields

Tu-
ple

None A list of custom graphene fields which will be added to the model input type.

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

use_type_nameString None If supplied, no new input type will be created, and instead the registry will be queried for
an input type with that name. Note that supplying this value will invalidate many other
arguments, as they are only relevant for creating the new input type.

many_to_many_extrasDict {} A dict with extra information regarding many-to-many fields. See below.
many_to_one_extrasDict {} A dict with extra information regarding many-to-one relations. See below.
for-
eign_key_extras

Dict {} A dict with extra information regarding foreign key extras.

one_to_one_extrasDict {} A dict with extra information regarding one to one extras.

mutation{
batchPatchUser(input: [{

id: "VXNlck5vZGU6MQ==",
name: "John Doe",

}]){
user{

id
name
address

}
}

}

18.7. DjangoBatchPatchMutation 55

graphene-django-cud, Release 0.11.0

18.8 DjangoBatchDeleteMutation

Will delete multiple instances of a model depending on supplied filters. The returned arguments are:

• deletionCount: True if the instance was found and deleted.

• deletedIds: The ids of the deleted instances.

• missedIds: The ids of the missed instances.

Mutation input arguments:

Argument Type
ids [ID]!

All meta arguments:

Argument type De-
fault

Description

model Model None The model. Required.
permissions Tuple None The permissions required to access the mutation
lo-
gin_required

Boolean None If true, the calling user has to be authenticated

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased
name of the model

class BatchDeleteUser(DjangoBatchDeleteMutation):
class Meta:

model = User

mutation {
batchDeleteUser(ids: ["VXNlck5vZGU6MQ=="]){

deletedIds
missedIds
deletionCount

}
}

18.9 DjangoFilterDeleteMutation

Will delete multiple instances of a model depending on supplied filters. The returned arguments are:

• deletionCount: True if the instance was found and deleted.

• deletedIds: The ids of the deleted instances.

Mutation input arguments:

Argument Type
input Object!

All meta arguments:

56 Chapter 18. Models documentation

graphene-django-cud, Release 0.11.0

Argument type De-
fault

Description

model Model None The model. Required.
filter_fields Tuple () A number of filter fields which allow us to restrict the instances to be

deleted.
permissions Tuple None The permissions required to access the mutation
lo-
gin_required

Boolean None If true, the calling user has to be authenticated

If there are multiple filters, these will be combined with and-clauses. For or-clauses, use multiple mutation calls.

class FilterDeleteUser(DjangoFilterDeleteMutation):
class Meta:

model = User
filter_fields = ('name', 'house__address',)

mutation {
filterDeleteUser(input: {name: 'John'}){

deletedIds
deletionCount

}
}

18.10 DjangoFilterUpdateMutation

Will update multiple instances of a model depending on supplied filters. The returned arguments are:

• updatedCount: The number of updated instances.

• updatedObjects: The ids of the deleted instances.

Mutation input arguments: +————+———–+ | Argument | Type | +============+===========+ | filter |
Object! | +————+———–+ | data | Object! | +————+———–+

All meta arguments:

18.10. DjangoFilterUpdateMutation 57

graphene-django-cud, Release 0.11.0

Argu-
ment

type De-
fault

Description

model Model None The model. Required.
fil-
ter_fields

Tu-
ple

() A number of filter fields which allow us to restrict the instances to be deleted.

only_fields It-
er-
able

None If supplied, only these fields will be added as input variables for the model

ex-
clude_fields

It-
er-
able

None If supplied, these fields will be excluded as input variables for the model.

re-
turn_field_name

String None The name of the return field within the mutation. The default is the camelCased name
of the model

permis-
sions

Tu-
ple

None The permissions required to access the mutation

lo-
gin_required

BooleanNone If true, the calling user has to be authenticated

auto_context_fieldsDict None A mapping of context values into model fields. See below
op-
tional_fields

Tu-
ple

() A list of fields which explicitly should have required=False

re-
quired_fields

Tu-
ple

None A list of fields which explicitly should have required=True

type_name String None If supplied, the input variable in the mutation will have its typename set to this string.
This is useful when creating multiple mutations of the same type for a single model.

If there are multiple filters, these will be combined with and-clauses. For or-clauses, use multiple mutation calls.

class FilterUpdateUserMutation(DjangoFilterDeleteMutation):
class Meta:

model = User
filter_fields = ('name',)

mutation {
filterUpdateUser(filter: {name: 'John'}, data: {name: 'Ola'}){

updateObjects{
id
name

}
}

}

58 Chapter 18. Models documentation

CHAPTER 19

Conversion utilities

59

graphene-django-cud, Release 0.11.0

60 Chapter 19. Conversion utilities

CHAPTER 20

Custom types

61

	Installation
	Basic usage
	Mutations
	DjangoCreateMutation
	DjangoUpdateMutation
	DjangoPatchMutation
	DjangoDeleteMutation
	DjangoBatchCreateMutation
	DjangoBatchUpdateMutation
	DjangoBatchPatchMutation
	DjangoFilterUpdateMutation
	DjangoFilterDeleteMutation
	DjangoBatchDeleteMutation

	Included and excluded fields
	Excluded fields
	Only fields

	Optional and required fields
	General rules
	Explicitly overriding

	Permissions and authentication
	Main attributes
	The get_permissions method
	Overriding the permissions pipeline
	Wrapping the mutate method

	Field validation
	Individual fields
	Overriding the validation pipeline
	Known limitations

	Nested fields
	Foreign key extras
	Many to one extras
	Many to many extras
	One to one extras
	Other aliases
	Excluding fields
	Deep nested arguments

	Custom field value handling
	Handlers
	Known limitations

	Auto context fields
	Other hooks
	before_mutate
	before_save
	after_mutate

	Field, argument and type naming
	Overriding field types
	Custom fields
	Reusing types
	Known limitations and quirks
	Lifecycle of a mutation
	Models documentation
	DjangoCreateMutation
	DjangoUpdateMutation
	DjangoPatchMutation
	DjangoDeleteMutation
	DjangoBatchCreateMutation
	DjangoBatchUpdateMutation
	DjangoBatchPatchMutation
	DjangoBatchDeleteMutation
	DjangoFilterDeleteMutation
	DjangoFilterUpdateMutation

	Conversion utilities
	Custom types

